Deformation Mechanisms of Very Long Single-Wall Carbon Nanotubes Subject to Compressive Loading
نویسندگان
چکیده
We report atomistic studies of single-wall carbon nanotubes with very large aspect ratios subject to compressive loading. These long tubes display significantly different mechanical behavior than tubes with smaller aspect ratios. We distinguish three different classes of mechanical response to compressive loading. While the deformation mechanism is characterized by buckling of thin shells in nanotubes with small aspect ratios, it is replaced by a rod-like buckling mode above a critical aspect ratio, analogous to the Euler theory in continuum mechanics. For very large aspect ratios, a nanotube is found to behave like a flexible macromolecule which tends to fold due to vdW interactions between different parts of the carbon nanotube. This suggests a shell-rod-wire transition of the mechanical behavior of carbon nanotubes with increasing aspect ratios. While continuum mechanics concepts can be used to describe the first two types of deformation, statistical methods will be necessary to describe the dynamics of wire-like long tubes. @DOI: 10.1115/1.1751181#
منابع مشابه
Structural Mechanics Approach to Investigate the Hyperelastic Mechanical Behavior of Single and Multi-wall Carbon Nanotubes
In the current research, a three-dimensional finite element model was considered to predict the mechanical behavior of Single Wall (SWCNTs) and Multi Wall Carbon Nanotubes (MWCNTs). Assuming the nonlinear elastic behavior of C-C bond in large strains, hyperelastic models were considered. Literature review revealed that the material parameters of the hyperelastic models have been determined from...
متن کاملAb Initio Study of Chirality Effects Onphonon Spectra, Mechanical and Thermal Properties of Nearly Samediameter Single Wall Carbon Nanotubes
In this paper, we have used density functional perturbation theory (DFPT) and Pseudo-potential method to calculate the phonon spectrum, phonon density of states (DOS), specific heat capacity and mechanical properties of (5,5) armchair and (9,0) zigzag Single Wall Carbon Nanotubes (SWCNTs). Our calculations show that Young’s modulusfor (5,5) and (9,0) nanotubesare higher than 1TPa. We have also ...
متن کاملMulti-shell gold nanowires under compression
Deformation properties of multi-wall gold nanowires under compressive loading are studied. Nanowires are simulated using a realistic many-body potential. Simulations start from cylindrical fcc (111) structures at T = 0 K. After annealing cycles axial compression is applied on multi-shell nanowires for a number of radii and lengths at T = 300 K. Several types of deformation are found, such as la...
متن کاملMolecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes
Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...
متن کاملMultiscale Evaluation of the Nonlinear Elastic Properties of Carbon Nanotubes Under Finite Deformation
This paper deals with the calculation of the elastic properties for single-walled carbon nanotubes (SWCNTs) under axial deformation and hydrostatic pressure using the atomistic-based continuum approach and the deformation mapping technique. A hyperelastic model based on the higher-order Cauchy-Born (HCB) rule being applicable at finite strains and accounting for the chirality and material nonli...
متن کامل